Chapitre

Démonstrations

Théorème o.1: Théorème de comparaison

Soient $\sum u_k$ et $\sum v_k$ deux séries à termes positifs ou nuls. On suppose qu'il existe $k_0 \ge 0$ tel que, pour tout $k \ge k_0$, $u_k \le v_k$.

- Si $\sum v_k$ converge alors $\sum u_k$ converge.
- Si $\sum u_k$ diverge alors $\sum v_k$ diverge.

Preuve 0.1

La convergence ne dépendant pas des premiers termes, on peut donc supposer $k_0=0$.

- · Notons $S_n=u_0+\cdots+u_n$ et $S_n'=v_0+\cdots+v_n$. Les suites (S_n) et (S_n') sont croissantes, et de plus, pour tout $n\geq 0$, $S_n\leq S_n'$.
- Si la série $\sum v_k$ converge, alors la suite (S'_n) converge. Soit S' sa limite.
- La suite (S_n) est croissante et majorée par S', donc elle converge, et ainsi la série $\sum u_k$ converge aussi.
- Inversement, si la série $\sum u_k$ diverge, alors la suite (S_n) tend vers $+\infty$, et il en est de même pour la suite (S'_n) et ainsi la série $\sum v_k$ diverge.

Théorème o.2 : Théorème des équivalents

Soient (u_k) et (v_k) deux suites à termes strictement positifs. Si $u_k \sim v_k$ alors les séries $\sum u_k$ et $\sum v_k$ sont de même nature.

Î

Preuve 0.2

Comme les 2 suites sont équivalents, la limite de leur quotient vaut 1. Donc pour tout $\epsilon > 0$, il existe k_0 tel que, pour tout $k \ge k_0$,

$$\left| \frac{u_k}{v_k} - 1 \right| < \epsilon,$$

ou autrement dit

$$(1 - \epsilon)v_k < u_k < (1 + \epsilon)v_k.$$

Fixons un $\epsilon < 1$.

Si $\sum u_k$ converge, alors par le théorème de comparaison, $\sum (1-\epsilon)v_k$ converge, donc $\sum v_k$ également.

Réciproquement, si $\sum u_k$ diverge, alors $\sum (1+\epsilon)v_k$ diverge, et $\sum v_k$ aussi.

Théorème 0.3

Toute série absolument convergente est convergente.

A

Preuve 0.3

Utilisons le critère de Cauchy. Soit $\sum u_k$ une série absolument convergente.

La série $\sum |u_k|$ est convergente, donc la suite des sommes partielles (S'_n) avec $S'_n = \sum_{k=0}^n |u_k|$ est une suite convergente, donc de Cauchy.

Soit $\epsilon>0$ fixé. Il existe donc $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$ et pour tout $p\geq 0$:

$$S'_{n+p} - S'_n = |u_n| + |u_{n+1}| + \dots + |u_{n+p}| < \epsilon.$$

Par suite, pour $n \geq n_0$ et $p \geq 0$ on a par l'inégalité triangulaire :

$$|u_n + u_{n+1} + \dots + u_{n+p}| \le |u_n| + |u_{n+1}| + \dots + |u_{n+p}| < \epsilon.$$

Donc, d'après le critère de Cauchy, $\sum u_k$ est convergente.

Théorème o.4 : Règle du quotient de d'Alembert

Soit $\sum u_k$ une série à termes strictement positifs telle que $\left(\frac{u_{k+1}}{u_k}\right)$ converge vers l

- 1. Si l < 1, la série converge.
- 2. Si l > 1, la série diverge.
- 3. Si l = 1, on ne peut conclure.

π Preuve 0.4

Rappelons tout d'abord que la série géométrique $\sum q^k$ converge si |q| < 1, diverge sinon.

• Dans le premier cas du théorème, soit un réel q tel que l < q < 1. On a $\left| \frac{u_{k+1}}{u_k} \right| \leq q$ à partir d'un certain rang N, et donc $u_{k+1} \leq u_k q$. Par récurrence, on obtient que

$$u_k \le u_{k-(k-N)}q^{k-N} = u_N q^{-N}q^k = cq^k$$

, avec c constant.

Comme 0 < q < 1, alors la série $\sum q^k$ converge, et, par le théorème de comparaison : la série $\sum u_k$ converge.

• Si $\left|\frac{u_{k+1}}{u_k}\right| > 1$, la suite $(|u_k|)$ est croissante : elle ne peut donc pas tendre vers 0 et la série diverge.

Théorème 0.5 : Règle des racines de Cauchy

Soit une série à termes strictement positifs. Si il existe, on note $l=\lim \sqrt[n]{u_n}$.

- \cdot Si l < 1, la série converge
- Si l > 1, la série diverge.

π Preuve 0.5

Rappelons que la nature de la série ne dépend pas de ses premiers termes. On peut ainsi trouver trouver un certaing rang N à partir duquel les assertions suivantes sont vérifiées.

Dans le premier cas, soit un réel q tel que l < q < 1. On a $\sqrt[k]{|u_k|} \le q$ implique $|u_k| \le q^k$. Comme 0 < q < 1, alors $\sum q^k$ converge, donc la série aussi par le théorème de comparaison.

Dans le second cas, $\sqrt[k]{|u_k|} > 1$, donc $|u_k| > 1$. Le terme général ne tend pas vers 0, donc la série diverge.

n Théorème o.6 : Critère de Leibniz

Supposons que $(u_k)_{k\geq 0}$ soit une suite qui vérifie :

- 1. $u_k \ge 0$ pour tout $k \ge 0$,
- 2. la suite (u_k) est une suite décroissante,

3. et
$$\lim_{k\to+\infty} u_k = 0$$
.

Alors la série alternée $\sum_{k=0}^{+\infty} (-1)^k u_k$ converge.

De plus, Soit S la somme de cette série et soit (S_n) la suite des sommes partielles.

1. La somme S vérifie les encadrements :

$$S_1 \leq S_5 \leq \cdots \leq S_{2n+1} \leq \cdots \leq S \leq \cdots \leq S_{2n} \leq \cdots \leq S_4 \leq S_0.$$

2. En plus, si $R_n=S-S_n=\sum_{k=n+1}^{+\infty}(-1)^ku_k$ est le reste d'ordre n, alors on a $|R_n|\leq u_{n+1}.$

π Preuve 0.6

Nous allons nous ramener à deux suites adjacentes.

- La suite (S_{2n+1}) est croissante car $S_{2n+1} S_{2n-1} = u_{2n} u_{2n+1} > 0$.
- La suite (S_{2n}) est décroissante car $S_{2n}-S_{2n-2}=u_{2n}-u_{2n-1}\leq 0.$
- Enfin $S_{2n+1}-S_{2n}$ tend vers 0 car $S_{2n+1}-S_{2n}=-u_{2n+1}\to 0$ (lorsque $n\to +\infty$).

En conséquence (S_{2n+1}) et (S_{2n}) convergent vers la même limite

S. Donc (S_n) converge vers S.

De plus, comme les suites S_{2n+1} et S_{2n} sont adjacentes, $S_{2n+1} \leq S \leq S_{2n}$ pour tout n.

Enfin on a aussi

$$0 \ge R_{2n} = S - S_{2n} \ge S_{2n+1} - S_{2n} = -u_{2n+1}$$

pour n pair et, pour n impair

$$0 \le R_{2n+1} = S - S_{2n+1} \le S_{2n+2} - S_{2n+1} = u_{2n+2}.$$

Ainsi, quelle que soit la parité de n, on a $|R_n| = |S - S_n| \le u_{n+1}$.