Chapitre

Développements limités

1. Défintion et premières propriétés

Définition 1.1 : Développement limité en o

Soit I un intervalle ouvert de $\mathbb R$ tel que $0 \in I$. Soit $f:I \to \mathbb R$. On dit que f ademet un développement limité en o à l'ordre m si il existe un pôlynome $P \in \mathbb R_m[X]$ et une fonction $\varepsilon:I \to \mathbb R$ telle que $\varepsilon \to 0$ tel que $\forall x \in I, f(x) = P(x) + x^m \varepsilon(x)$.

On appelle le pôlynome la partie régulière du développement et le o(...) est le reste. Les coefficients du polynome sont appelés les coefficient du développement limité.

Définition 1.2 : En $x \neq 0$

Soit $f:I-\{x_0\}\to\mathbb{R},t\to g(t+x_0)$ Alors g admet un DL à l'ordre m en $x_0\iff$ f admet un DL à l'ordfe m en o.

On peut donc faire un changement de variable $t + x_0 = x$.

Lemme 1.1

Si f admet un DL à l'ordre m en o, alors il admet un DL à l'odre k en o $\forall k \in \{0,\dots,m\}$ qui s'obtient en troquant le DL initial à partir du coeffcient k

π

Théorème 1.1 : Unicité du DL

Les coeffcicients du DL d'une fonction sont unique.

Lemme 1.2

f admet un DL limité en o à l'ordre o $\iff f$ est continue en o. Dans ce cas, $a_0=f(0)$

Lemme 1.3

f admet un DL à l'ordre 1 en 0 \iff f est dérivable en 0. Dans ce cas, $a_1 = f'(0)$.

Exemples:

- $\cdot \sin(x) = 0 + 1x + o(x) = x + o(x)$
- $\cdot \cos(x) = 1 + o(x)$
- $e^x = 1 + x + o(x)$

Proposition 1.1: DL et "primitivation"

Soit $f:I\to\mathbb{R}$. On suppose qu'elle admet une primitive F. Si f admet un DL en o à l'ordre $p:f(x)=a_0+a_1x+\cdots+a_px^p+o(x^p)$, alors F admet un DL à l'ordre $p+1:F(x)=F(0)+a_0x+a_1\frac{x^2}{2}+a_2\frac{x^3}{3}+\cdots+a_p\frac{x^{p+1}}{p+1}+o(x^{p+1})$

Proposition 1.2

Soit $f:I\to\mathbb{R}$, dérivable sur I, tel que $\exists p\in\mathbb{N}, f'(x)=o(x^p)$. Alors $f(x)=f(0)+o(x^{p+1})=f(0)+(x^{p+1})\varepsilon_2(x)$

Notation de Landeau

π

Définition 2.1

Soit I intervalle de \mathbb{R} .

On dit que f est négligeable devant g en x_0 , noté $f=o_{x\to x_0}(g)$ si il existe $\eta>0$ et $\varepsilon:]x_0-\eta,x_0+\eta[\to\mathbb{R}$ telle que $\varepsilon\to x$ et $\forall x\in]x_0-\eta,x_0+\eta[,f(x)=g(x)\varepsilon$

On dit que f est dominée par g en x_0 , noté $f=O(g)_{x\to x_0}$ si il existe $\eta>0$ et $\varepsilon:]x_0-\eta,x_0+\eta[\to\mathbb{R}$ telle que $|\varepsilon|\leq C$ et $\forall x\in]x_0-\eta,x_0+\eta[,f(x)=g(x)\varepsilon$

On dit que f est dominée par g en x_0 , noté $f \sim_{x \to x_0} g$ si il existe $\eta > 0$ et $\varepsilon :]x_0 - \eta, x_0 + \eta[\to \mathbb{R}$ telle que $\varepsilon \to 0$ et $\forall x \in]x_0 - \eta, x_0 + \eta[, f(x) = g(x)(1+\varepsilon)$

Sommes

 $o(x^m) + o(x^m) = o(x^m)$ mais on a aussi $o(x^m) - o(x^m) = o(x^m) \neq 0.$

1. Fonctions p fois dérivables

Dans cette partie, on note I un intervalle ouvert non vide de \mathbb{R} .

Définition 3.1

pour $p \in \mathbb{N}$, la dérivée p^{ene} de $f: I \to \mathbb{R}$, notée $f^{(p)}$ est définie récursivement : $f^{(0)} = f$ et si $f^{(p-1)}$ est dérivable sur I, alors $f^{(p)} = (f^{(p-1)})'$.

On dit que f est p fois dérivable si $f^{(p)}$ est définie. Comme la dérivabilité implique la continuité, et $f^{(p)}$ déifinie, les dérivées précédentes sont continues sur tout l'intervalle.

Définition 3.2 : Fonction p fois dérivables en un point

On dit que f est p fois dérivabilité en $x_0 \in I$ si $\exists I_1$ intervalle ouvert tel que $x_0 \in I$ tel que f est p-1 fois dérivable sur I_1 et $f^{(p-1)}$ est dérivable en x_0 .

Définition 3.3 : Classe

On dit que f est de classe C^p sur I si f est p fois dérivable sur I et la dérivée pème est continue.

On dit que f est de classe C^{∞} si $f \in C^p \forall p \in \mathbb{N}$.

π Proposition 3.1

Soit f et g p fois dérivables sur I. Alors f+g p fois dérivables sur I et $(f+g)^{(p)}=f^{(p)}+g^{(p)}$.

Cela fonctionne aussi pour f et g p fois dérivables en un point et de classe $\mathbb{C}^p.$

Proposition 3.2

 λf est p fois dérivables et $\lambda f^{(p)} = (\lambda f)^{(p)}$.

Proposition 3.3

fg est p fois dérivable sur l et $(fg)^{(p)} = \sum_{m=0}^p C_p^m f^{(m)} g^{(p-m)}$

Proposition 3.4

Soient I,J 2 intervalles ouverts non vides de \mathbb{R} . $f:I\to J\subset \mathbb{R}$ et $g:J\to \mathbb{R}$. Si f est n fois dérivable sur I et g est n fois déruvable sur J, alors $g\circ f:I\to \mathbb{R}$ est n fois dérivable sur I.

Proposition 3.5

Si $g:I\to\mathbb{R}$ est n fois dérivable sur I et ne s'annule pas sur I, alors la fonction $f:x\in I\to \frac{1}{g(x)}$ est n fois dérivable aussi.

Proposition 3.6:

Soit $f:I\to\mathbb{R}$ $n\neq 0$ fois dérivable telle que f' ne s'annule pas sur l. Alors f est une bijection de l dans $f(I)=J\in\mathbb{R}$. On a alors l'application réciproque f^{-1} est n fois dérivable. On a aussi $f^{-1}:J\to I$

1.4Formules de Taylor

Théorème 4.1 : Théorème de Taylor-Young

Si f est $(n \ge 1)$ fois dérivable en o, alors $f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \cdots + \frac{x^n}{n!}f^{(n)}(0) + o(x^n)$

Théorème 4.2 : Théorème de taylor-Lagranges

Si f est $(n \ge 1)$ fois dérivable sur I, alors

 $\begin{array}{l} \forall x \in I, \exists c_x \in [\min(0,x), \max(0,x)] \text{ tel que } f(x) = f(0) + x f'(0) + \frac{x^2}{2} f''(0) + \dots + \frac{x^{n-1}}{(n-1)!} f^{(n-1)}(0) \frac{x^n}{n!} f^{(n)}(c_x) \end{array}$

Remarques

Quand n=1, on obtient le TAF

Si $x \neq 0, c_x \in l$ intervalle ouvert.

Théorème 4.3 : Formule de Taylor-Laplace (avec reste intégrale)

Si f $I \to \mathbb{R}$ tel que f tes de classe $C^p(I)$, alors $\forall x \in I$, $f(x) = f(0) + xf'(0) + \cdots + \frac{x^{p-1}}{(p-1)!}f^{(p-1)}(0) +$

$$\int_0^x f^{(p)}(s) \frac{(x-s)^{p-1}}{(p-1)!} ds$$

1.4. DL de fonctions usuelles

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n}x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\sinh x = x + \frac{x^{3}}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$\frac{1}{1+x} = 1 - x + x^{2} + \dots + (-1)^{n}x^{n} + o(x^{n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \dots + \frac{(-1)^{n+1}}{n}x^{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

$$\tan(x) = x + \frac{x^{3}}{3} + o(x^{4})$$