Chapitre

Cinématique du solide

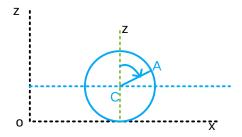
1. Disque tournant

Dans le cas d'un disque tournant, le vecteur rotation est $\dot{\alpha} \overrightarrow{e_z}$ et si l'angle est dans le sens anti-horaire, on a $-\dot{\alpha} \overrightarrow{e_z}$

D'après la formule de varignon, on a $\overrightarrow{a} = \overrightarrow{o} + \overrightarrow{AO} \wedge \overrightarrow{\Omega} = \overrightarrow{0}$. Dans le premier cas, en se plaçant en coordonnées polaires on a $\overrightarrow{v_a} = \dot{\alpha} \overrightarrow{e_z} \wedge \rho \overrightarrow{e_\rho} = \dot{\alpha} \rho \overrightarrow{e_\varphi}$. Dans le deuxième cas, on a $-\dot{\alpha} \rho \overrightarrow{e_\varphi} = + -\dot{\alpha} \rho \overrightarrow{e_{\varphi'}}$.

Si les 2 vitesses sont positives, le vecteur tourne bien dans le sens de l'angle orienté.

1. Point sur le périmètre du disque



Contexte

Un disque de rayon r tourne uniformément autour de son axe, à une vitesse angulaire ω . Son centre C se déplace sur la droite horizontale z = r du plan vertical (Oxz) du référentiel R. On désigne par θ l'angle que fait un rayon avec l'axe (Cz) du disque, A étant un point quelconque situé à la périphérie du disque et repéré par cet angle. La vitesse du centre C du disque par rapport à R est $r\dot{\theta}_{ex}^{-1}$.

L'objectif est de trouver l'expression de $\overrightarrow{v_a}$.

On applique Varignon:

$$\begin{split} \overrightarrow{v_a} &= \overrightarrow{v_c} + \overrightarrow{AC} \wedge \overrightarrow{\omega} \\ &= r \dot{\theta} \overrightarrow{e_x} - r \overrightarrow{e_\rho} \wedge \overrightarrow{e_y} \\ &= r \dot{\theta} \overrightarrow{e_x} + r \dot{\theta} \overrightarrow{e_\theta} \end{split}$$

On peut laisser le résultat dans la base.

Pour trouver la vitesse en $\theta=\pi$, on exprime le vecteur en fonction de l'angle.

On trouve une vitesse nulle car la vitesse du centre de masse a été choisie pour. On retrouve donc la condition de roulement sans glissement.

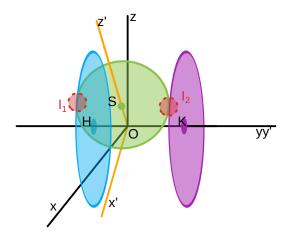
Différentiel d'une automobile

Contexte

Le bati du différentiel, auquel est fixé le disque S tourne à la vitesse angulaire constante ω autour de l'axe Oy du repère R.

Le satellite, de rayon $a=SI_1=SI_2$ et de centre S, peut par ailleurs tourner autour de son axe (Oz') tout en restant en contact avec les deux disques identiques P_1 et P_2 – les planétaires – de rayon $b=HI_1=KI_2$. On note w_0,w_1,w_2 les vitesses angulaires de rotation de S, P_1 et P_2 autour de leurs axes respectifs.

On représente la situation sur cette figure :



Les seuls degrés de liberté du système sont $\omega, \omega_1, \omega_2, \omega_0$.

On cherche d'abord la vitesse du disque S par rapport à R.

On sait que le disque S tourne autour de l'axe y à une distance b de l'axe et à une vitesse ω . On peut donc écrire

$$\overrightarrow{v_S} = \overrightarrow{v_O} + \overrightarrow{SO} \wedge \overrightarrow{\omega}$$

$$= \overrightarrow{0} - b\overrightarrow{e_z} \wedge \omega \overrightarrow{e_y}$$

$$= b\omega \overrightarrow{e_x}$$

On a choisit de fixer ω dans le sens trigonométrique autour de y, donc il est positif.

On cherche maintenant les vitesses $\overrightarrow{v_{i1}},\overrightarrow{v_{i2}}$ des points appartenant au disque S.

On rappelle que dans une BOND, $\overrightarrow{e_z} \wedge \overrightarrow{e_y} = -\overrightarrow{e_x}$

Comme on connait désormais la vitesse de S, on peut utiliser le théorème de Varignon. On a donc

$$\overrightarrow{v_{i1}} = \overrightarrow{v_S} + \overrightarrow{I_1S} \wedge \overrightarrow{\Omega_S}$$

$$= b\omega \overrightarrow{e_x'} + a\overrightarrow{e_y'} \wedge (\omega_0 \overrightarrow{e_z'} + \omega \overrightarrow{e_y'})$$

$$= (b\omega + a\omega_0)\overrightarrow{e_x'}$$

Attention. Le vecteur rotation du disque S est la somme du vecteur rotation lié à sa rotation autour de l'axe y et du vecteur lié à sa rotation autour de lui-même!

Pour $\overrightarrow{V_{I2}}$, c'est le même principe

Bien que la base ne soit pas fixe, on peut quand même l'utiliser pour exprimer la vitesse

$$\overrightarrow{v_{i2}} = \overrightarrow{v_S} + \overrightarrow{I_2S} \wedge \overrightarrow{\Omega_S}$$

$$= b\omega \overrightarrow{e_x'} - a\overrightarrow{e_y'} \wedge (\omega_0 \overrightarrow{e_z'} + \omega \overrightarrow{e_y'})$$

$$= (b\omega - a\omega_0)\overrightarrow{e_x'}$$

On peut maintenant trouver des relations entre les ω grace à la condition de roulement sans glissement. Prenons d'abord P_1 . Soit $I_{1,p} \in P, I_{1,s} \in S$. On sait par la condition de roulement sans glissement que :

$$\overrightarrow{v_{I_{1,s}}} = \overrightarrow{v_{I_{1,p}}}$$

$$= \overrightarrow{v_{H \in P}} + \overrightarrow{I_1 H} \wedge \omega_1 \overrightarrow{e_y}$$

$$= \overrightarrow{0} - b\overrightarrow{e_z} \wedge \omega_1 \overrightarrow{e_y}$$

$$= +b\omega_1 \overrightarrow{e_x}$$

$$(b\omega + a\omega_0)\overrightarrow{e_x} = b\omega_1 \overrightarrow{e_x}$$

$$b\omega + a\omega_0 = b\omega_1$$

Prenons ensuite P_2 . Soit $I_{2,p} \in P, I_{2,s} \in S$. On sait par la condition de roulement sans glissement que :

$$\overrightarrow{v_{I_{2,s}}} = \overrightarrow{v_{I_{2,p}}}$$

$$= \overrightarrow{v_{K \in P}} + \overrightarrow{I_{2}K} \wedge \omega_{2} \overrightarrow{e_{y}'}$$

$$= \overrightarrow{0} - b\overrightarrow{e_{z}'} \wedge \omega_{2} \overrightarrow{e_{y}'}$$

$$= +b\omega_{2} \overrightarrow{e_{x}'}$$

$$(b\omega - a\omega_{0})\overrightarrow{e_{x}'} = b\omega_{2} \overrightarrow{e_{x}'}$$

$$b\omega - a\omega_{0} = b\omega_{2}$$

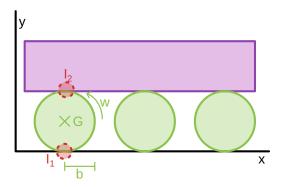
On déduit des 2 résultats précédents que

$$2b\omega = b\omega_1 + b\omega_2$$
$$2\omega = \omega_1 + \omega_2$$

Si la voiture est en ligne droite, $\omega_1=\omega_2$, et en conséquence, comme $2\omega=\omega_1+\omega_2$, on a $\omega=\omega_1=\omega_2$. On en déduit que $\omega_0=0$ et que le satellite ne tourne pas sur lui-même.

En revanche si une roue est bloquée (cas extrème), on aura par exemple $\omega_1=0\Rightarrow 2\omega=\omega_2$ et $\omega_0=\frac{-a}{b}\omega$. En virage, $\omega_0\neq 0$ selon les relations précédentes.

1. Roulement d'un bloc de pierre sur des rondins



Contexte

On veut reproduire une expérience d'Obélix qui pousse, à la vitesse $v=v\mathbf{e}_x$, un bloc de pierre (modélisé par un parallélépipède) sur des rondins de bois (cylindres creux de rayon b) qui ne glissent ni sur le sol, ni sous la pierre. On définit I_1 le point de contact d'un rondin sur le sol et I_2 le point de contact du rondin sous la pierre. On désigne par G le centre de masse de ce rondin. On travaille dans le référentiel terrestre supposé galiléen et les rondins de bois tournent à la vitesse angulaire $\omega \overrightarrow{e_z}$ avec ω algébrique.

On souhaite d'abord exprimer les vitesses des points I_1 et I_2 appartenant au rondin de bois en fonction de la vitesse de G. On applique Varignon :

$$\overrightarrow{v_{I_1}} = \overrightarrow{v_G} + \overrightarrow{I_1G} \wedge \omega \overrightarrow{e_z}$$

$$= v_g \overrightarrow{e_x} + b\overrightarrow{e_y} \wedge \omega \overrightarrow{e_z}$$

$$= v_g \overrightarrow{e_x} + b\omega \overrightarrow{e_x}$$

$$= (v_q + b\omega) \overrightarrow{e_x}$$

MÉCANIQUE DU SOLIDE & Cinématique du solide, Roulement d'un bloc de pierre sur des rondins

De la même façon, au point I_2 , on a

$$\overrightarrow{v_{I_2}} = \overrightarrow{v_G} + \overrightarrow{I_2G} \wedge \omega \overrightarrow{e_z}$$

$$= v_g \overrightarrow{e_x} - b\overrightarrow{e_y} \wedge \omega \overrightarrow{e_z}$$

$$= v_g \overrightarrow{e_x} - b\omega \overrightarrow{e_x}$$

$$= (v_g - b\omega) \overrightarrow{e_x}$$

Exprimons maintenant les conditions de roulement sans glissement en \mathcal{I}_1 et en \mathcal{I}_2 .

On a
$$I_1\in \mathrm{sol}, I_1\in \mathrm{roue}$$
, avec $\overrightarrow{v_{I_1\in \mathrm{sol}}}=\overrightarrow{0}$. On en déduit que $\overrightarrow{v_{I1,s}}=(v_g+b\omega)\overrightarrow{e_x}=\overrightarrow{0}\Rightarrow v_g=-\omega b$

Pour I_2 , on a $I_2\in \mathsf{pierre}, I_2\in \mathsf{roue}$, avec $\overrightarrow{v_{I_2\in \mathsf{pierre}}}=\overrightarrow{v}$ selon l'énoncé \overrightarrow{v} et $\overrightarrow{v_{I_2,\mathsf{pierre}}}=(v_g-b\omega)\overrightarrow{e_x}$. On en déduit que $v_g-\omega b=v$.

On peut en déduire la valeur de v_g . Avec les 2 conditions, on trouve que $-2b\omega=v$, ce qui nous permet de trouver une valeur de $\omega=\frac{-v}{2b}$. En injectant cett expression dans la première condition, on trouve que $v_g-(-\frac{v}{2b})b=\frac{v}{2}$.

car solide en translation donc tous les points ont la même vitesse.

Exemple

Le signe de ω est négatif, ce qui est cohérent car le rondin tourne dans le sens horaire, la pierre étant poussée vers la droite