Chapitre

Aspect énergétique des solides

Puissance et Travail des Actions Mécaniques

- 5.1. Puissance et Travail des Actions Extérieures
 - Théorème 1.1 : Puissance totale

$$P = \sum_{i} \overrightarrow{F}_{i} \cdot \overrightarrow{v_{A_{i}}}$$

Théorème 1.2 : Travail élémentaire

$$\delta W_{ex} = \sum_{i} \overrightarrow{f_{ex}} \cdot d\overrightarrow{OA_{i}}$$

5.1. Formule Générale de la Puissance Appliquée à un Solide

La puissance ${\cal P}$ des actions mécaniques agissant sur le solide ${\cal S}$ est donnée par :

 $\hat{\pi}$

Théorème 1.3 : Puissance par Torseur

$$P = \overrightarrow{R} \cdot \overrightarrow{v_A} + \overrightarrow{M_A} \cdot \overrightarrow{\Omega}$$

 $\overrightarrow{R}=\sum\overrightarrow{F}$ (Résultante), $\overrightarrow{M_A}$ (Moment en A), $\overrightarrow{v_A}$ (Vitesse en A), $\overrightarrow{\Omega}$ (Vecteur Rotation).

Remarques Clés:

- Force Ponctuelle : Si l'action mécanique est appliquée en A $(\overrightarrow{M_A}(\overrightarrow{F}) = \overrightarrow{0})$, alors $P = \overrightarrow{F} \cdot \overrightarrow{V_{A/R}}$.
- Couple pur $(\overrightarrow{\gamma})$: La puissance associée est $P = \overrightarrow{\Omega} \cdot \overrightarrow{\gamma}$.

5. Cas Spécifiques de Puissance et Travail

5.2. Puissance des Actions Intérieures

Théorème 2.1 : Puissance des forces intérieures dans un solide

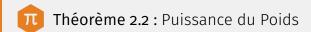
Dans un solide, la puissance des forces intérieures est nulle.

$$P_{int} = 0$$

(Rappel : La puissance des forces intérieures ne dépend pas du référentiel d'étude.)

5.2. Puissance et Travail du Poids $(M\overrightarrow{g})$

Le poids agit comme une force unique $M\overrightarrow{g}$ appliquée au Centre de Masse (C).



$$P_{poids} = M \overrightarrow{g} \cdot \overrightarrow{v_c}$$

Théorème 2.3 : Travail du Poids

$$W(Poids) = M\overrightarrow{g} \cdot \overrightarrow{OC} + Cst$$

5.2. Puissance des Actions de Contact (AC)

Soient S_1 et S_2 en contact ponctuel en I.

Théorème 2.4 : Puissance totale des Actions de Contact

$$P_t^{AC} = \overrightarrow{R_{S_2 \to S_1}} \cdot \overrightarrow{v_{I_{1/2}}}$$

 P_t^{AC} est nulle si : 1) Pas de glissement $(\overrightarrow{v_{I_{1/2}}}=\overrightarrow{0})$ ou 2) Pas de frottement (T=0).

5.1 iaisons Parfaites

5.3. Définition

Définition 3.1 : Liaison Parfaite

C'est une action de contact entre 2 solides. Elle est parfaite quand les actions mécaniques qu'elle exerce ont une puissance nulle.

5.3. Liaison Pivot Parfaite

Une liaison pivot parfaite s'effectuant en un point fixe O implique :

Théorème 3.1 : Condition de perfection de la liaison pivot

$$\overrightarrow{M_O^{AC}} \cdot \overrightarrow{\Omega} = 0$$

Conséquence : Le moment $\overrightarrow{M_O^{AC}}$ est perpendiculaire au vecteur rotation $\overrightarrow{\Omega}$. Si $\overrightarrow{\Omega}$ est porté par (Oz), alors $M_{O,z}^{AC}=0$.

5.4 Théorèmes Énergétiques

5.4. Théorème de la Puissance Cinétique

On note E_k l'énergie cinétique du solide par rapport à R.

Théorème 4.1 : Théorème de la puissance cinétique

$$rac{\mathrm{d}E_k}{\mathrm{d}t} = P_{ex} + P_{in} = P_{ex}$$
 (pour un solide indéformable)

5.4. Théorème de l'Énergie Cinétique

Théorème 4.2 : Théorème de l'énergie cinétique

$$\Delta E_k = W_{in} + W_{ex} = W_{ex}$$
 (pour un solide indéformable)

L'expression élémentaire est $dE_k = \delta W^{in} + \delta W^{ex}$.

$oldsymbol{5}$ Énergie Potentielle (E_p)

5.5. Forces Conservatives

Définition 5.1 : Force Conservative

Une force est conservative si le travail élémentaire qu'elle produit se met sous la forme d'une différentielle d'une fonction, i.e., $\delta W(\overrightarrow{F}) = -\mathrm{d}E_p.$ E_p est l'énergie potentielle associée à cette force

5.5 Énergie Potentielle de Pesanteur (E_{pp})

Théorème 5.1 : Énergie Potentielle de Pesanteur

$$E_{pp} = -M\overrightarrow{g}\cdot\overrightarrow{OC} + Cst$$