Chapitre

Modèle scalaire

1. Fonction d'onde

Définition 1.1: Lumière

La lumière est une onde électromagnétique. Il y a donc 2 champs $\overrightarrow{E} + \overrightarrow{B}$.

Par l'approximation scalaire, on associe l'onde non plus à des fonctions vectorielles mais à une fonction scalaire $\psi(M,t)$ dépendant de la position $(\overrightarrow{OM}=\overrightarrow{r})$ et du temps $^{\mathbf{x}}$.

π

Théorème 1.1 : Équation d'onde

$$\nabla^2 \psi - \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} = 0$$

avec v la vitesse de propagation de l'onde $v=\frac{c}{n}.$

$\hat{\pi}$

Définition 1.2: Période d'oscillation

L'oscillation de ψ en fonction du temps se fait à une période de $T=\frac{\lambda}{v}\simeq 10^{-15} {\rm s}.$

On obtient un ordre de grandeur de l'odre de la femtoseconde, qui est une grandeur impossible à mesurer. On mesure donc une intensité lumineuse en W/m^2 .

× Difficulté

phénomènes étudiés

On suppose donc que cette fonction d'onde de 4 variables décrit tous les

Une énergie arrivée pendant un certain temps sur une certaine surface.

Définition 1.3: Intensité lumineuse

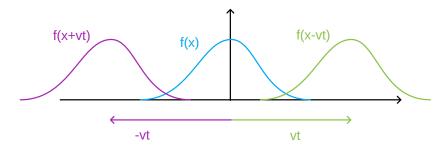
C'est ce qui est mesuré par les capteurs : $I = \frac{E}{\Delta t \times S} \propto \psi(\overrightarrow{r}, t)^2$.

1. Types d'onde

1.2. Onde progressive à une dimension

Définition 2.1: Onde progressive

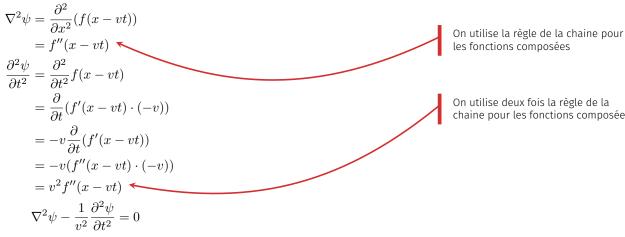
Elle "avance" dans une direction à une vitesse v.



Au temps $t_1>t_0$, il y a une translation de $\psi(x,t_0)=f(x)$ en t_1 de façon à obtenir $\psi(x,t_1) = f(x-vt_1)^{\times}$.

On vérifie que cette solution vérifie l'équation :

Si on met un plus à la place du moins, il y a une propagation dans le sens des x décroissants au lieu des x croissants



On utilise deux fois la règle de la

chaine pour les fonctions composées

1.2. Ondes monochromatiques

Définition 2.2 : Onde monochromatique

La dépendance temporelle est sinusoidale. On a alors

$$\psi(\overrightarrow{r},t) = A(\overrightarrow{r})\cos(\omega t + \varphi(\overrightarrow{r}))$$

On reconnait l'amplitude de l'onde, $\omega t + \varphi$ la phase en t quelconque, sans oublier ω la pulsation de l'onde $\frac{2\pi}{T}$.

On obtient alors l'équation de Helmotz :

$$\nabla^2 \psi + \frac{\omega^2}{v^2} \psi = 0$$

Intensité

L'intensité vaut :

 $I(\overrightarrow{r}) = 2 < A^2(\overrightarrow{r})\cos^2(\omega t + \varphi(\overrightarrow{r})) >$ $= 2 < A^{2} \frac{1}{2} (1 + \cos(2(\omega t + \varphi))) >$ En effet, la moyenne d'une fonction sinusoïdale ou cosinusoïdale sur un ou plusieurs cycles complets est nulle

L'intensité dépend donc de l'amplitude.

Surface d'onde

Définition 2.3 : Surface d'onde

Une surface telle que $\varphi(\overrightarrow{r})$ est constant, ce qui implique que $\cos()$ prend la même valeur pour un certin tempsf

1.2. Onde plane progressive monochromatique (OPPM)

Définitions

Définition 2.4: Onde plane

Les surfaces d'onde sont des plans qui avancent dans une direction à la vitesse v.

π Définition 2.5 : OPPM

Elle est de la forme $\psi(\overrightarrow{r},t) = A\cos(\omega t - \overrightarrow{k} \cdot \overrightarrow{r} + \varphi_0)$.

Propriété Signification

Plane Les surfaces d'onde sont des plans

Elle se dirige dans une certaine direction à une vitesse de propagation Progressive

Monochromatique La dépendance temporelle est sinusoidale.

Propriétés

On prend $\varphi(\overrightarrow{r}) = \overrightarrow{k} \cdot \overrightarrow{r}$ et A constant pour obtenir i $\psi(\overrightarrow{r},t) = A\cos(\omega t - \overrightarrow{k} \cdot \overrightarrow{r} + \varphi_0)$

Théorème 2.1: Relation de dispersion

$$\omega = \frac{c}{n} ||\overrightarrow{k}||$$

Avec la relation de dispersion, on obtient $\lambda = \frac{\lambda_0}{n}$ avec $\lambda_0 = \frac{2\pi c}{\omega}$

Double périodicité

Il ne faut pas confondre la périodicité spatiale $\lambda=\frac{2\pi}{k}$ et la périodicité temporelle $T=\frac{2\pi}{\omega}$

Astuce

 $\overline{k^{'}}$ est le vecteur d'onde. Il donne la direction de propagation de l'onde. Il est donc dans la même direction que \overrightarrow{u} . On remarque que la phase augmente comme $\overrightarrow{k} \cdot \overrightarrow{r}$ augmente lors de la propagation.

i Info

Cette fonction est bien de la forme f(vt-x) avec $x=\overrightarrow{u}\cdot\overrightarrow{r},v=\omega$, donc elle est bien progressive. Elle respecte bien la condition d'une onde monochromatique $\cos(\omega t \ + \ \varphi(\overrightarrow{r}))$, avec $\varphi(\overrightarrow{r}) = \overrightarrow{k} \cdot \overrightarrow{r} + \varphi_0$

× Difficulté

La couleur n'est pas définie par λ mais pas λ_0 , i.e. la pulsation!

1.2. Onde sphérique monochromatique

Definition

Définition 2.6 : Onde sphérique

Les surfaces d'onde sont des sphères concentriques. Elles sont de la forme $\psi(\overrightarrow{r},t) = \frac{A}{r}\cos(\omega t - kr)$

On en déduit que $\varphi(\overrightarrow{r}) = \pm kr + \varphi_0$ avec r le rayon depuis l'origine. $^{\mathbb{Q}}$

Cela signifie qu'à un instant t donné, on a la même phase d'onde sur des sphères concentriques séparés de λ

Convergence/Divergence

Pour $\cos(\omega t - kr)$, on est en présence d'une onde divergence, dans le cas contraire, $\cos(\omega t + kr)$, c'est convergent.

En effet, la surface d'onde a un rayon croissant au cours du temps (pour une phase donnée) avec une phase $\omega t - kr$ et inversement.

Vecteur d'onde

Il vérifie toujours la realtion de dispersion.

Comme il n'y a plus de direction de propagation, on ne peut plus définir le vecteur d'onde. Cependant, l'onde converge/diverge de l'origine. On peut donc prendre $\overrightarrow{u}=\pm\overrightarrow{e_r}, \overrightarrow{k}=\pm k\overrightarrow{e_r}$ qui est valable pour tous les points de l'espace .

Amplitude

Prenons l'onde divergente $\psi(\overrightarrow{r},t)=A(\overrightarrow{r})\cos(\omega t-kr)$. On sait que l'intensité est une puissance surfacique. Cela signifie que pour une même surface d'onde, la puissance totale doit toujours être la même au cours de la propagation, et donc indépendante de r. i On en déduit que $A(\overrightarrow{r}) \propto \frac{1}{r}$:

Exemple

En effet, \overrightarrow{k} est bien localement perpendicualire au surfaces d'onde en tout point.

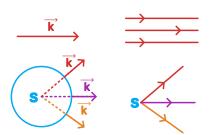
i Info

En d'autres termes, cela signifie que l'amplitude dans une direction diminue avec la distance

1. Lien avec l'optique géométrique

Notions élémentaires

Un rayon lumineux correspond à un vecteur d'onde pris en un point de l'espace.



Chemin optique et phase

Le chemin optique est relié par la phase d'une onde se propageant entre les deux points. On a donc, à un instant donné :

$$\varphi_B - \varphi_A = \overrightarrow{k} \cdot \overrightarrow{r_b} - \overrightarrow{k} \cdot \overrightarrow{r_a}$$

$$= -\overrightarrow{k} \cdot (\overrightarrow{r_b} - \overrightarrow{r_a})$$

$$= -\overrightarrow{k} \cdot \overrightarrow{AB}$$

$$= \frac{n\omega}{c} AB$$

$$= \frac{2\pi}{\lambda} n \cdot AB$$

Le signe de k n'a pas d'importance car on cherche une différence de phase. On peut l'enlever, cela reste physiquement juste.

Théorème de Malus

Théorème 3.1 : Théorème de Malus

Les rayons lumineux sont orthogonaux aux surfaces d'onde en tout point.

1.3. Notation complexe

On remplace $\psi(\overrightarrow{r},t)$ par sa version complexe :

$$\psi(\overrightarrow{r},t) = A(\overrightarrow{r}e^{-i(\omega t + \varphi(\overrightarrow{r}))})$$

avec
$$\psi(\overrightarrow{r},t)=Re(\underline{\psi(\overrightarrow{r},t)})$$
 et $A(\overrightarrow{r})=|\underline{\psi(\overrightarrow{r},t)}|$ et $-(\omega t+\varphi(\overrightarrow{r}))=\arg(\underline{\psi(\overrightarrow{r},t)})$

Pour une OPPM, on a $\underline{\psi(\overrightarrow{r},t)}=Ae^{-i\varphi_0}e^{-i(\omega t-\overrightarrow{k}\cdot\overrightarrow{r})}$ avec $Ae^{-i\varphi_0}=\underline{A}$ l'amplitude complexe.

L'intensité se calcule avec $I = |\psi(\overrightarrow{r},t)|$