0

Chapitre

Notation complexe

De l'Onde Réelle à l'Onde Complexe

Une onde sinusoïdale réelle se propageant selon une dimension * peut s'écrire :

$$\psi(x,t) = A\cos(kx - \omega t + \phi_0)$$

• A : Amplitude réelle

• k: Nombre d'onde ($k=2\pi/\lambda$)

• ω : Pulsation ($\omega = 2\pi f$)

• ϕ_0 : Phase à l'origine

En utilisant la formule d'Euler, $e^{i\theta}=\cos(\theta)+i\sin(\theta)$, on peut voir que l'onde réelle est la partie réelle d'une onde complexe :

$$\psi(x,t) = \Re\left(Ae^{i(kx-\omega t + \phi_0)}\right)$$

On définit alors l'onde complexe associée :

$$\psi(x,t) = Ae^{i(kx - \omega t + \phi_0)}$$

Amplitude Complexe

Pour simplifier davantage, on peut regrouper l'amplitude réelle et la phase en une seule entité appelée **amplitude complexe**.

L'onde complexe peut être réécrite comme suit :

$$\underline{\psi}(x,t) = \underbrace{Ae^{i\phi_0}}_{\underline{A}} e^{i(kx-\omega t)}$$

On définit l'amplitude complexe (qui ne dépend ni de x ni de t) :

$$A = Ae^{i\phi_0}$$

× Difficulté

C'est parce qu'on se place en une seule dimension que l'on peut écrire kx, dans le cas général, on écrit $\overrightarrow{k} \cdot \overrightarrow{r}$

• Le module de A est l'amplitude réelle : |A| = A

- L'argument de \underline{A} est la phase à l'origine : $\arg(\underline{A}) = \phi_0$

L'intensité d'une onde est proportionnelle au carré de son amplitude réelle, moyennée dans le temps. En notation complexe, le calcul est direct et beaucoup plus simple.

L'intensité I est proportionnelle au module au carré de l'amplitude complexe :

$$I \propto |\underline{A}|^2$$

Souvent, on choisit les unités de telle sorte que la constante de proportionnalité soit 1, ce qui donne la relation fondamentale $^{\times}$:

$$I = |\underline{A}|^2 = \underline{A} \cdot \underline{A}^*$$

où \underline{A}^* est le conjugué complexe de \underline{A} .

Difficulté
Bien sur, cette relatio n'est valable que pour une onde plane

0. Superposition et Interférence

0.4. Principe

L'amplitude complexe de la somme de plusieurs ondes est simplement la somme de leurs amplitudes complexes.

$$\underline{A}_{\mathsf{totale}} = \sum_{j} \underline{A}_{j}$$

0.4. Intéférence

Soient deux ondes $\underline{\psi}_1$ et $\underline{\psi}_2$ avec des amplitudes complexes $\underline{A}_1=A_1e^{i\phi_1}$ et $\underline{A}_2=A_2e^{i\phi_2}$.

L'amplitude totale est : $\underline{A}_{tot} = \underline{A}_1 + \underline{A}_2$.

L'intensité résultante est :

```
I_{\text{tot}} = |\underline{A}_1 + \underline{A}_2|^2
                                                                  (1. Définition du module carré)
                                                                  (2. Propriété |z|^2 = zz^*)
      =(\underline{A}_1+\underline{A}_2)(\underline{A}_1+\underline{A}_2)^*
      = (\underline{A}_1 + \underline{A}_2)(\underline{A}_1^* + \underline{A}_2^*)
                                                                 (3. Conjugaison de la somme)
      =\underline{A_1}\underline{A_1^*}+\underline{A_1}\underline{A_2^*}+\underline{A_2}\underline{A_1^*}+\underline{A_2}\underline{A_2^*} \quad \text{(4. Développement du produit)}
      =|\underline{A}_1|^2+|\underline{A}_2|^2+(\underline{A}_1\underline{A}_2^*+\underline{A}_2\underline{A}_1^*)\quad \text{(5. Regroupement des termes)}
      =I_1+I_2+2\Re(\underline{A}_1\underline{A}_2^*)
                                                                  (6. Définition des intensités individuelles et z + z^* = 2\Re(z))
      =I_1+I_2+2\Re(A_1e^{i\phi_1}\cdot A_2e^{-i\phi_2}) (7. Remplacement par la forme polaire)
      = I_1 + I_2 + 2\Re(A_1 A_2 e^{i(\phi_1 - \phi_2)})
                                                                  (8. Simplification de l'exponentielle)
      = I_1 + I_2 + 2A_1A_2\cos(\phi_1 - \phi_2)
                                                                 (9. Formule d'Euler)
      = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\Delta\phi)
                                                                  (10. Remplacement de A par \sqrt{I} et \Delta \phi = \phi_1 - \phi_2)
```

avec $\Delta \phi = \phi_1 - \phi_2$ le déphasage entre les deux ondes.

1 Formules Utiles à Retenir

Formules Clés

- Onde complexe : $\psi(x,t) = \underline{A}e^{i(kx-\omega t)}$
- Amplitude Complexe : $\underline{A} = Ae^{i\phi_0}$
- · Intensité : $I = |\underline{A}|^2 = \underline{A} \cdot \underline{A}^*$
- Superposition : $\underline{A}_{tot} = \underline{A}_1 + \underline{A}_2$
- · Interférence (2 ondes) : $I_{\rm tot} = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\Delta\phi)$
- Propriété du conjugué : $(e^{i\theta})^* = e^{-i\theta}$
- Propriété module carré : $|z|^2 = z \cdot z^*$