2

Chapitre

Interférences d'ondes lumineuses

Si 2 sources éclairent un point, on a une fonction d'onde totale $\psi(\overrightarrow{r},t)_1+\psi(\overrightarrow{r},t)_2$. Cependant, on ne peut pas le faire avec l'intensité car elle dépend du carré des fonctions $^{\mathbb{Q}}$.

2. Role de la pulsation dans les interférences

La superposition de $\psi=\psi(\overrightarrow{r},t)_1+\psi(\overrightarrow{r},t)_2$ des deux ondes a pour intensité $I=2<(\psi_1+\psi_2)^2>=|\underline{\psi(\overrightarrow{r},t)_1}+\underline{\psi(\overrightarrow{r},t)_2}|^2=I_1+I_2+2Re(\psi(\overrightarrow{r},t)_1\psi(\overrightarrow{r},t)_2)$

La partie réelle est le terme d'interférence. Si les 2 fonctions d'onde de pulsation ω_1 et ω_2 , alors en un point M, on a

$$\frac{\psi(\overrightarrow{r},t)_1}{\psi(\overrightarrow{r},t)_2} = \frac{\varphi_{1,0}e^{-w\omega_1 t}}{\varphi_{2,0}e^{-w\omega_2 t}}$$

On a alors $I_1=|\varphi_{1,0}|^2$ et $I_2=|\varphi_{2,0}|^2$ et $2Re(\underline{\psi(\overrightarrow{r},t)_1\psi(\overrightarrow{r},t)_2})=2AB\cos((\omega_2-\omega_1)t+(\varphi_2-\varphi_1))$

On remarque que le terme d'interférence oscille à la pulsation $\omega_2 - \omega_1$.

On considère donc deux cas :

- Si les 2 ondes ont la même pulsation (les ondes sont alors isochrones ou cohérentes) $^{\mathbb{Q}}$: on somme les $\psi(\overrightarrow{r},t)$
- \cdot Si les les pulsations sont différentes, on somme les I

Battement

Astuce

En général, si $\psi(\overrightarrow{r},t)=\psi(\overrightarrow{r},t)_1+\psi(\overrightarrow{r},t)_2$, on a pas toujours $I=I_1+I_2$.

Astuce

On parle de cohérence quand on peut définir la phase d'un objet par rapport à l'autre Si les 2 pulsations sont très proches, le terme d'interférence dépend du temps, on parle alors de battement.

2. Interférence d'ondes isochrones

2.2. En un point

On a 2 ondes $\psi(\overrightarrow{r},t)_1,\psi(\overrightarrow{r},t)_2$ pouvant s'écrire comme

$$\psi_1(M) = \psi_{10}(M)e^{-i(\omega t + \varphi(M))}$$

et

$$\underline{\psi_2(M)} = \underline{\psi_{20}}(M)e^{-i(\omega t + \varphi(M))}$$

ou encore $\psi_{10}e^{-i(\omega t + \varphi_1)}$ et $\psi_{20}e^{-i(\omega t + \varphi_2)}$.

Les intensités devienent alors $I_1(M)=|\underline{\psi_1}|=\psi_{10}^2$ et $I_2(M)=|\underline{\psi_2}|=\psi_{20}^2$

Par le principe de superposition, on a

$$|\underline{\psi}|^{2} = |\psi_{10}e^{-i\varphi_{1}} + \psi_{20}e^{-i\varphi_{2}}|^{2}$$

$$= (\psi_{10}e^{-i} + \psi_{20}e^{-i})(\psi_{10}e^{+i} + \psi_{20}e^{+i})$$

$$= \psi_{10}^{2} + \psi_{20}^{2} + \psi_{10}\psi_{20}(e^{-i(\varphi_{1} - \varphi_{2})} + e^{+i(\varphi_{1} - \varphi_{2})})$$

$$= I_{1} + I_{2} + 2\sqrt{I_{2}I_{2}}\cos(\varphi_{2} - \varphi_{1})$$

On remarque que le terme d'interférence dépend surtout de $\varphi_1-\varphi_2=\Delta\varphi$ qui est le déphasage des 2 ondes au point M.

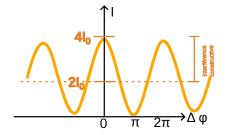
Les interférences sont

- constructives si $\cos(\Delta\varphi) > 0 \Rightarrow I > I_1 + I_2$
- destructives si $\cos(\Delta\varphi) < 0 \Rightarrow I < I_1 + I_2$

Même intensité

Si les ondes ont la même intensité, l'expression devient [©]

$$I = 2I_0(1 + \cos(\Delta\varphi)) = 4I_0\cos^2(\frac{\Delta\varphi}{2})$$



le module carré d'un nombre complexe z est égal au produit de z par son conjugué complexe z \boxed{z} : $|z|^2 = z \cdot z^*$

On utilise l'identité d'Euler : Dans ce cas, $\theta=\varphi_1\varphi_2$. On remplace la somme des exponentielles par $2\cos(\varphi_2-\varphi_1)$.

• Astuce $\operatorname{Car} \cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$

Il est max $(4I_0)$ si $\Delta \varphi$ est un multiple de 2π . Les 2 ondes sont alors en phase. Dans le cas contraire, il est minimum (o) si $\Delta \varphi = \pi + 2\pi n$ et les 2 ondes sont en opposition de phase.

Définition 2.1 : Ordre d'interférence

C'est

$$p = \frac{\Delta \varphi}{2\pi}$$

L'internsité sera alors maximale si p est entier et minimale dans le cas contraire.

Cas général

Dans ce cas, $I_1 \neq I_2$ et $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\Delta\varphi)$. On obtient que

- · L'intensité maximale vaut alors $I_1+I_2+2\sqrt{I_1I_2}=(\sqrt{I_1}+\sqrt{I_2})^2$
- · L'intensité minimale vaut alors $(\sqrt{I_1+\sqrt{I_2}})^2$

On introduit la visibilité.

Définition 2.2 : Visibilité

$$V = \frac{I_{max - I_{min}}}{I_{max} + I_{min}} \le 1$$

Par exemple, si $I_2=0.2I_1, V=0.75$ ${
m i}$.

Interférogramme

Définition 2.3 : Interférogramme

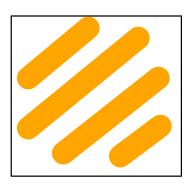
C'est la répartition spatiale de l'intensité résultant des interférences : $I(\overrightarrow{r}) = I_1(\overrightarrow{r}) + I_2(\overrightarrow{r}) + 2\sqrt{I_1I_2})$

En pratique, $I_1(\overrightarrow{r})$ et $I_2(\overrightarrow{r})$ varient peu mais pas $\Delta \varphi(\overrightarrow{r})$, qui peut varier beaucoup.

Exemple

i Info

Les interférences restent visibles même si il y a 2 odg de différence d'intensité entre les 2 ondes Sur un écran, on peut avoir $\Delta \varphi(\overrightarrow{r})=2\pi n$ pour différentes points. On observe des zones brillantes pour $\Delta \varphi=2\pi n$ et sombres pour $\Delta \varphi=\pi+2\pi n$. Il faut donc voir les interférences comme une redistribution spatiale de l'intensité.



2.2. Intéfrérence de 2 ondes planes

On prend

$$\underline{\psi(\overrightarrow{r},t)_1} = \psi_{10} e^{i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t + \varphi_1)}$$

et

$$\underline{\psi(\overrightarrow{r},t)_2} = \psi_{20} e^{i(\overrightarrow{k}\cdot\overrightarrow{r}-\omega t + \varphi_2)}$$

de même pulsation, norme de vecteur d'onde mais $\overrightarrow{k_1}
eq \overrightarrow{k_2}$ i .

On a

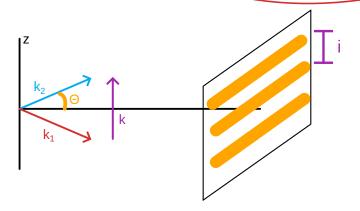
$$\Delta \varphi = \phi_2 - \phi_1$$

$$= (\overrightarrow{k_2} \cdot \overrightarrow{r'} + \varphi_2) - (\overrightarrow{k_1} \cdot \overrightarrow{r'} + \varphi_1)$$

$$= (\overrightarrow{k_2} - \overrightarrow{k_1}) \cdot \overrightarrow{r'} + (\varphi_2 - \varphi_1)$$

$$= \overrightarrow{k}$$

On a $I(\overrightarrow{r})=I_1+I_2+2\sqrt{I_1I_2}\cos(2k\sin(\theta)z)$. On verra donc sur un écran des franges (lignes)!



i Info

Cependant, $||\overrightarrow{k_1}||=\frac{n\omega}{c}=||\overrightarrow{k_2}||.$ Seule la direction change.

Le second terme est un décalage uniforme que l'on peut choisir nul

 \overrightarrow{k} est la différence entre les 2 vecteurs d'onde, il vaut ici $2k\sin(\theta)\overrightarrow{e_z}$

! Attention

Pour avoir cette distance visible à l'œil nu (i = 1mm) et $\lambda = 500nm$, il faut $\sin(\theta) = 2.5 \cdot 10^{-5}$. Il faut donc un très petit angle.

π

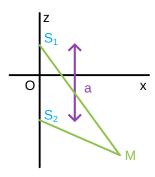
Définition 2.4 : Interfrange

C'est la distanxe entre les franges, notée i avec

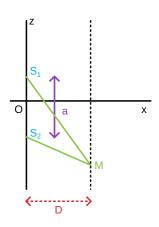
$$i = \frac{2\pi}{2k\sin(\theta)} = \frac{\lambda}{2\sin(\theta)}$$

2.2. Interférence entre de 2 ondes sphériques

Dispositif



Écran parallèle à l'axe des sources

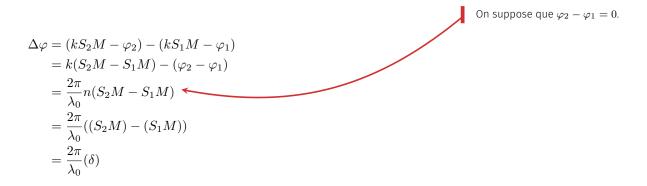


En supposant a << D et en introduisant ici la différence de marche δ de 2 ondes on trouve

$$\Delta \varphi = \frac{2\pi}{\lambda_0} \delta$$

On note
$$\psi(\overrightarrow{r},t)_1=rac{A}{r_1}e^{i(kr_1-\omega t-arphi_1)}$$
 et $\psi(\overrightarrow{r},t)_2=rac{A}{r_2}e^{i(kr_2-\omega t-arphi_2)}$

L'intensité en M vaut $I_1=|rac{A}{r_1}|^2, I_2=|rac{A}{r_2}|^2$ et la différence de phase



On suppose que l'écran est loin des sources i

Sous ces hypothèses, on peut prendre $I_1 \simeq I_2 \simeq |\frac{A}{r}|^2 = I_0$. $^{f X}$

On calcule S_1M , S_2M : $S_1M = \sqrt{x^2 + y^2 + (z - \frac{a}{2})^2}$ et $S_2M = \sqrt{x^2 + y^2 + (z + \frac{a}{2})^2}$

On a toujours D >> y, z, donc on écrit :

$$S_1 M = \sqrt{x^2 + y^2 + (z - \frac{a}{2})^2}$$

$$= (D^2 (1 + \frac{y^2}{D^2} + \frac{(z - a/2)^2}{D^2}))^{\frac{1}{2}}$$

$$\simeq D(1 + \frac{y^2}{2D^2} + \frac{(z - a/2)^2}{2D^2})$$

De même pour S_2M :

$$S_2M \simeq D(1 + \frac{y^2}{2D^2} + \frac{(z+a/2)^2}{2D^2})$$

On peut alors calculer δ :

$$\delta = n(r_2 - r_1)$$

$$= \frac{n}{2D}((z + a/2)^2 - (z - a/2)^2)$$

$$= \frac{naz}{D}$$

$$\Delta \varphi = \frac{2\pi az}{\lambda D}$$

On en déduit l'intensité en M :

Proposition 2.1 : Intensité d'interférence sur un tableau

$$I_M = 2I_0(1 + \cos(\frac{2\pi az}{\lambda D}))$$

On cherche maintenant l'Interfrange i (période spatiale de l'interférogramme) : $i=\frac{\lambda D}{a}$

i Info

Cela signifie que D >> a et M est proche du centre de l'écran, donc D >> x,y

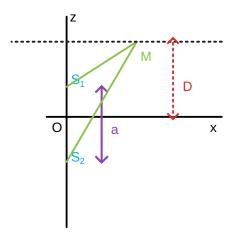
X Difficulté

On ne peut pas faire cette hypothèse pour la phase car elle évolue beaucoup plus rapidement, sur de plus petites distances, à l'échelle de λ . Elle se trouve en effet dans un cosinus et est très petite. On garde donc $r_1 \neq r_2$

Exemple

Pour l'observer, il faut que i soit de l'ordre du mm. En prenant $\lambda = 500nm$, donc $\frac{D}{a} \simeq 10^3$ donc $a \simeq 1mm$

2.2. Écran perpendiculaire à l'axe des sources



On suppose également l'écran loin des sources et M proche du centre.

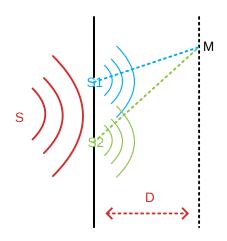
On trouve que $\delta=na(1-\frac{x^2+y^2}{2D^2})$ et $\Delta\varphi=\frac{2\pi}{\lambda_0}na(1-\frac{x^2+y^2}{2D^2})$. On en déduit $I(M)=2I_0(1+\cos(\frac{2\pi}{\lambda_0}na(1-\frac{x^2+y^2}{2D^2})))$

La forme géométrique de l'interférogramme (lieux d'égale intensité). On cherche donc $\Delta \varphi = Cst \iff x^2 + y^2 = Cst$ qui est l'équation d'un cercle centré au centre de l'écran.

2.2. Dispositifs interférentiels à division du front d'onde

Pour avoir 2 sources cohérentes de même pulsation ω , on va partager le front d'onde d'une source en 2 pour en fabriquer 2 nouvelles, qui seront cohérentes.

Trous de Young

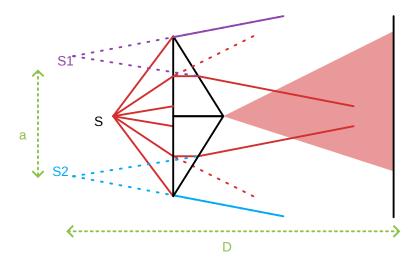


On perce 2 petits trous dans un écran!.

Attention

Elle permet aussi de mettre en évidence que des éléments sont des ondes On utilise alors un écran // à l'axe des sources et on peut se ramener aux calculs précédents.

Biprisme de Fresnel



Dans la zone d'interférence (ou champ d'interférence) tous les points sont illuminés par les sources virtuelles S_1, S_2 et on se ramène au calcul précédent.

2.2. Division d'amplitude

lame semie-réfléchissante

Sur un dioptre plan, le rayon incident donne une onde réfléchie et un rayon réfractée (onde transmise). Les 2 ondes de sortie ont donc la même fréquence.

L'amplitude de l'onde incidente est divisée entre l'onde réfléchie et l'onde transmise.

On introduit les coefficients de réflexion r et de transmission t par l'amplitude $\mathbf{i}: \psi(\overrightarrow{r},t)_r = \psi(\overrightarrow{r},t)_i r, \psi(\overrightarrow{r},t)_t = \psi(\overrightarrow{r},t)_i t$.

Nombre complexe

Ces coefficients peuvent être complexes, i.e. avoir une phase

Par exemple, pour un dioptre plan en incidence normale, on a

$$r=\frac{n_1-n_2}{n_1+n_2}, t=\frac{2n_1}{n_1+n_2}$$

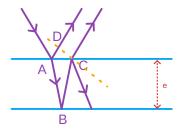
Exemple 2 : Lame 50/50 : |r|=|t|. Elle permet l'interférence de 2 ondes de même amplitude.

1 Info

On peut faire de même pour l'intensi-

2.2. Jame à face parallèle

On prend des lames de faces parallèles d'épaississeur e, d'indice n placées dans l'air.

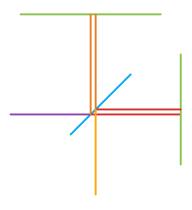


Les 2 rayons correspondent à des OPPM et se croisent à l'infini (interférences observables au foyer d'une lentille).

On cherche la différence de marche entre ces deux ondes de même vecteur d'onde. Elle correspond à la différence de parcourt entre le point de départ A et les points d'arrivée C et D.

Donc
$$\delta = (AB) + (BC) - (AD) = n(AB + BC) - AD = 2ne\cos(\theta_2)$$

Interféromètre de Michelson



Le miroir de Michelson est un interféromètre optique qui permet de visualiser et de mesurer les **interférences d'ondes**. Le dispositif se compose des éléments suivants :

- 1. Une **source lumineuse** (violet) monochromatique et cohérente (par exemple, un laser).
- 2. Une lame semi-réfléchissante (bleu) (séparatrice de faisceau) qui divise le faisceau incident en deux.
- 3. Deux miroirs (vert) (M1 et M2) placés aux extrémités des deux bras de l'interféromètre.
- 4. Un **détecteur** ou un écran pour observer les franges d'interférence.

Le faisceau incident est divisé en deux parties par la lame semi-réfléchissante. Chaque faisceau parcourt un bras de l'interféromètre (de longueurs respectives L_1 et L_2), est réfléchi par un miroir et retourne vers la lame. Les deux faisceaux se recombinent sur la lame, et le faisceau résultant, porteur de l'information d'interférence, est dirigé vers le détecteur.

L'observation de franges d'interférence est due à la **différence de marche optique** δ entre les deux faisceaux. Puisque chaque faisceau effectue un aller-retour dans son bras respectif, la différence de marche est donnée par :

$$\delta = 2L_2 - 2L_1 = 2(L_2 - L_1)$$